E heti kutatónk a 2013-as év ismeretterjesztő tudósa lett a Tudományos Újságírók Klubja (TÚK) tagjainak szavazatai alapján. A díjat a TIT tanácstermében megtartott rendezvényen vehette át február 19-én. Az elismerés mellé a díjazottról kisbolygót neveztek el. Az ELTE részecskefizikusának nem idegen a világegyetem, hiszen annak alapkérdéseit kutatja, és segítségével olyan, igazán izgalmas válaszok felé vezet bennünket, mint a világelmélet vagy a multiverzum létezése.
– A TÚK díját azok a kutatók kapják, akik nem csak szakterületükön aktívak, hanem az ismeretek terjesztésben is. Hogy látja a népszerűsítő cikkek és a szakcikkek közötti különbséget?
– 37 éve írok ismeretterjesztő cikkeket, de nem nevezném könnyű feladatnak. Amit a Természet Világába vagy a Fizikai Szemlébe írok, népszerűsítő cikkeknek tekintem. Utóbbival a szélesebb szakmai közönségnek, az előbbivel minden érdeklődőnek próbálok valamit mondani. Önkritikusan tudom a visszajelzések alapján, hogy a cikkeim az átlagnál nehezebben követhetőek, a stílusom aprólékosabb, részletezőbb. Ez egy ideig idegesített, de most már azt mondom, ha még mindig kellek, akkor biztos van olyan társaság, aki elolvassa ezeket a fárasztóbb cikkeket.
– Miért lett fizikus, sőt részecskefizikus?
– Nem volt tudatos a választás, inkább reagálás bizonyos helyzetekre, és lehetőségekre. A középiskolában mindenbe belekóstoltam, sokféle sikerélményem volt.
Az igazi kérdés az lehetne, hogy miért nem lettem kémikus, miután megnyertem az országos tanulmányi versenyt. Az ok talán az, hogy a téma, amiből akkor dolgozatot kellett írni, a periódusos rendszer volt. A kémiatanárnőm két egyetemi tankönyvet adott a kezembe, amelyek lényegében az atom kvantumszerkezetéről szóltak. Láttam, hogy ez nem kémia. Érdekelt is a fizika, jó tanárom volt, de igazából az ragadott meg, hogy olyan fogalmak, mint a kémiai reakció, a vegyérték, visszavezethetők kvantumfizikai okokra.
Az egyetem második éve után a KFKI-ba kerültem, az ottani optikai csoportba, de Marx Györgyék kvantumfizikára ajánlottak nekem diplomatémát. Azonnal jöttem, és máig is itt vagyok az ELTE Atomfizikai Tanszékén.
– Az életrajza szerint sok mindennel foglalkozott: kozmológia, statisztikus fizika, fázisátmenetek, kvantumszíndinamika, sőt a Higgs-mező vizsgálatával is. A fizikában ezek összefüggenek egymással, de melyik az igazi területe?
– Én részecskefizikus vagyok, kvantumtérelmélettel foglalkozó részecskefizikus, de a kvantumtérelmélet nem egy szűk ösvény. Egy nagyon széles körben felhasználható eszköz, amivel több szinten lehet megközelíteni a természeti jelenségeket.
Van is a részecskefizikához kapcsolódóan egy kis elméleti csoport a Tanszéken, amit korábban én vezettem, most egy volt tanítványom. Van egy másik társaság is, amelyik Marx György és Szalay Sándor álmát, az asztrofizikai kutatásokat műveli. Ennek a létrehozásában is részem volt.
– Ezek elméleti munkák vagy gyakorlat, kísérlet is van benne?
– Az elmúlt néhány évben a kvantumtérelmélet bizonyos megoldási módszereinek fejlesztésén dolgozom. Az ellenőrzésnél modellrendszereket használunk, azaz olyan rendszereket, amelyek közvetlenül nem részecskefizikai jelenségekhez kapcsolódnak. Egy korábbi időszakban, a kvatumkromodinamikában az erős kölcsönhatások tulajdonságait vizsgáltuk. Azt, hogyan változnak meg az erős kölcsönhatási jelenségek véges hőmérsékleten. Egyebek mellett olyan izgalmas kompakt csillagászati objektumok vizsgálatára adnak eredményeink lehetőséget, mint a neutroncsillagok belsejében esetleg megbúvó kvarkcsillag.
Arra voltunk kíváncsiak, hogy mikor változik meg a pusztán hadronokból, tehát megfigyelhető elemi részekből álló szerkezete egy neutroncsillagnak. Itt konkrét csillagászati megfigyelésekből származó paraméterekkel végrehajtott számításokat végeztünk. Én ilyen esetben mondom, hogy kapcsolódom valós jelenségekhez. De természetesen technikai alkalmazásokról szó sincs, ezek alapkutatások.
– Jelenleg milyen szűkebb területeken dolgozik?
– Kenneth Wilson Nobel-díjas fizikus a 70-es évek elején fogalmazta meg azt az elképzelést, hogy a világunk a lehetséges elméletek a végtelen dimenziós terében egy pont. Egy elméletet bizonyos paraméterhalmaz konkrét értékeivel jellemezhetünk, amely paramétereket a világ adott állapotát jellemző energiaskála határozza meg. Elindulhatunk a lehető legkisebb elképzelhető skálától, az úgynevezett Planck-skálától az ősrobbanás utáni 10-43s pillanatában. Innen indul az elméletünk az elmélettérben, és a máig vezető utat kellene felfedezni. Elindulunk ott, ahol ábránkon a szaggatott vonal van. A vastag pontok azoknak a stabil elméleteknek a helyzetei, amelyek az energiaskála egy tartományát leírják. Az Univerzum hűlésével az energiaskála csökken és világunk továbbindul a következő stabil pont környezetébe. A kiindulásnál történik az ősrobbanás. Aztán megérkezünk arra a skálára, ahol az elektrogyenge kölcsönhatásnak, a Higgs-mechanizmusnak a jelensége következik. A fázisátmenetek kapcsán ezzel a témával is foglalkoztam, de még a 90-es években. Itt van annak Standard Modellnek a kialakulási pontja, amit ma ismerünk. Itt jön létre a híres Higgs-részecske is, amelyről olyan sokat hallani mostanában. Aztán ha megyünk tovább, elérkezünk az erős kölcsönhatások skálájára, majd a kvantum-elektrodinamikáéra, ami az atomfizikai skála. Ezen a skálán bizonyos jelenségek kitörlődnek, pl. már nem lesz érdekes a kvarkok közötti erőhatás. Ekkor már csak az kvantum-elektrodinamikai kölcsönhatások aktívak, pl. nagyon rövid időre elektron-pozitron párok jelennek meg, a részecskeszám nem állandó. Aztán eljutunk a kvantummechanikához, ahol már sima atomfizika van, majd következhet a klasszikus fizika, végül az általános relativitásnak a skálája. A skálaváltozás során az egyik releváns elmélet átváltozik a következő skálát jellemző elméletté. Ilyen stabil pontok közötti átalakulások leírásának módszerét vizsgálom most.
– Ez már inkább filozófia, nem?
– Nem teljesen. Egyes részei már ki vannak dolgozva, például az, hogy az egységes elektrogyenge elméletből hogyan jutok a kvantumelektrodinamikához. Egykori és mostani diákjaimmal olyan módszereken dolgozunk, hogy ezt az utat minél pontosabban lehessen követni. Izgalmas kérdés, hogy van egy sok paraméterrel elemezhető szuperelmélet, de annak nem minden része releváns minden energiaskálán. Azt a módszert, amelyikkel követhető, hogy adott skálán melyik része jön elő, hívják renormalizációs csoportnak. Ez az, amit mi kutatunk.
Az a változás, ami az egyik releváns skálájú elméletből egy másik releváns skálájú elméletbe vezet, egyszerű modellekre matematikailag feltárható. De még egy érdekesség. Ez az út talán rekonstruálható, de senki nem mondja, hogy a természet valamely Planck-skálán érvényes elméletből csak egyetlen út mentén haladhatott. A mi univerzumunkat egy történetileg meghatározott út jellemzi. Ahogy kozmikus környezetünk a skálákon végighaladt, a természeti „állandók” változása egyfajta módon történt. De más utak is lehetnek a világegyetem más tájain és ennek felismerésekor kezdenek multiverzumról beszélni. Tehát e mögött a divatos filozófiai terminológia mögött, valójában a kvantumtérelméleti modelleknél nyert tapasztalatnak az általánosítása, ha úgy tetszik, filozófiai átfogalmazása bújik meg. Ennyiben filozófiai üzenete is lehet annak, amit csinálunk.
TRUPKA ZOLTÁN
2014/10